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ABSTRACT

This article considers a robust hierarchical Bayesian approach to deal with random
effects of small area means when some of these effects assume extreme values, re-
sulting in outliers. In the presence of outliers, the standard Fay-Herriot model, used
for modeling area-level data, under normality assumptions of random effects may
overestimate the random effects variance, thus providing less than ideal shrinkage
towards the synthetic regression predictions and inhibiting the borrowing of infor-
mation. Even a small number of substantive outliers of random effects results in
a large estimate of the random effects variance in the Fay-Herriot model, thereby
achieving little shrinkage to the synthetic part of the model or little reduction in
the posterior variance associated with the regular Bayes estimator for any of the
small areas. While the scale mixture of normal distributions with a known mixing
distribution for the random effects has been found to be effective in the presence
of outliers, the solution depends on the mixing distribution. As a possible alter-
native solution to the problem, a two-component normal mixture model has been
proposed, based on non-informative priors on the model variance parameters, re-
gression coefficients and the mixing probability. Data analysis and simulation stud-
ies based on real, simulated and synthetic data show an advantage of the proposed
method over the standard Bayesian Fay-Herriot solution derived under normality
of random effects.
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1. Introduction

Small area estimation methods are becoming increasingly popular among survey

practitioners. Reliable small area estimates are often solicited by policy makers

from both government and private sectors for planning, marketing and decision

making. In order to meet the growing demand for reliable small area estimates, re-

searchers have developed methods that combine information from small areas and

other related variables. Ghosh and Rao (1994), Rao (2003), Jiang and Lahiri (2006),

Datta (2009) and Pfeffermann (2013) provided a comprehensive review of the re-

search in small area estimation.

The landmark paper by Fay and Herriot (1979) used the empirical Bayes (EB) ap-

proach (see, for example, Efron and Morris, 1973) and popularized model-based

small area estimation methods. Denoting the design-based direct survey estimator

of the ith small area by Yi and its auxiliary variable by xi, an r× 1 vector, Fay and

Herriot (1979) introduced the model

Yi = θi + ei, θi = xT
i β + vi, i = 1, . . . ,m. (1.1)

Here θi is a summary measure of the characteristic to be estimated for the ith small

area, ei is the sampling error of the estimator Yi, and the random effects vi denote

the model error measuring the departure of θi from its linear regression on xi. It is

assumed that e1, . . . ,em are independent and normally distributed with ei∼N(0,Di),

and are independent of v1, . . . ,vm, which are i.i.d. N(0,A). The sampling variances

Di’s are treated as known, but the model parameters β and A are unknown. Random

effects vi’s are also known as small area effects.

In this paper we focus on hierarchical Bayes (HB) methods for area-level models.

The classical area-level Fay-Herriot model was primarily developed as a frequentist

model, which was later given a Bayesian formulation (Rao 2003; Datta et al. 2005).

Estimators obtained from the Fay-Herriot model are shrinkage estimators, i.e., a

weighted average of the direct estimator and the model-based synthetic estimator,

and these weights depend on the model assumption. Datta and Ghosh (2012) gave

an extensive review of shrinkage estimation in the small area estimation context.

Shrinkage estimators are primarily constructed to improve standard estimators. For

instance, in the small area context model based shrinkage estimators are constructed
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to improve the precision of direct estimators such as the sample mean or the Horvitz-

Thompson estimator. Datta and Lahiri (1995) discussed how outliers can affect

shrinkage estimators, claiming that even a single outlier may lead all the small area

estimates to collapse to their corresponding direct estimates. This phenomenon was

also mentioned in the context of estimation of multiple normal means under the

assumption of an exchangeable normal prior (cf. Efron and Morris 1971, Stein

1981, and Angers and Berger 1991). One or more substantive outliers considerably

inflate the standard estimator of model variance.

An overestimation of model variance due to one or more substantive outliers prac-

tically results in no shrinkage of any of the direct estimates of the small area means

to the synthetic regression estimator. This also limits the reduction in the posterior

variances of the model-based estimates. To rectify this problem, following the work

of Angers and Berger (1991), who used a Cauchy distribution for the small area

means θi, Datta and Lahiri (1995) recommended a broader class of heavy-tailed dis-

tributions through a scale mixture of normal distributions. They showed that under

these assumptions, in the presence of substantive outliers, estimators corresponding

to the outlying areas converge to their corresponding direct estimators but leave the

non-outlying areas less affected. One difficulty with the last method is that the mix-

ing distribution for the scale parameter is considered to be known. For example, one

can use t-distribution for random effects, as in Xie et al. (2007). However, in the

absence of any information regarding the degrees of freedom, one needs to specify

a prior. Xie et al. (2007) assumed a gamma prior for the degrees of freedom. The

hyperparameters involved in this gamma distribution need to be specified. Bell and

Huang (2006) argued that, under practical circumstances, limited information is ob-

tained from the data regarding the degrees of freedom, and instead they used several

fixed values for the degrees of freedom.

In order to avoid specifying the mixing distribution in the previous paragraph, in

this paper we propose a two-component normal mixture distribution for the random

small area effects. Our model accommodates means for outlying areas to come

from the distribution with a larger variance. This is a simple extension of the Fay-

Herriot model with a contaminated random effects distribution with possibly small

proportion of areas having a larger model variance. Contaminated models have

been extensively used in empirical evaluations of the robust empirical best linear
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unbiased prediction (EBLUP) approach of Sinha and Rao (2009). We consider an

HB approach by assigning non-subjective priors to the parameters involved in the

model. Some components of these priors are improper, hence we provide sufficient

conditions for the posterior distribution to be proper.

In a recent article, Datta et al. (2011) demonstrated that in the presence of good

covariates xi, the variability of the small area means θi may be accounted for well

by xi, and including a random effects vi in the model (1.1) may be unnecessary.

These authors test a null hypothesis of no random effects in the small area model

and if it is not rejected, they propose more accurate synthetic estimators for the

small area means. In a more recent article, Datta and Mandal (2015) argued that

even if the null hypothesis was rejected in this case, it would be reasonable to expect

only a small fraction of the small areas means would not be adequately explained

by the covariates, and only these areas would require a random component to the

regression model.

Using the HB approach, Datta and Mandal (2015) considered a “spike and slab”

distribution for the random small area effects in order to propose a flexible balance

between the Fay and Herriot (1979) and Datta et al. (2011) models. However, it

is often difficult to find reliable covariates that would describe the response well,

particularly, if the number of small areas is large. For such datasets, not only the

test proposed by Datta et al. (2011) would suggest the inclusion of the small area

effects, but also the model proposed by Datta and Mandal (2015) would estimate the

probability of the existence of random effects as very high. This would effectively

suggest the Fay-Herriot model, but, in reality, only a small proportion of small areas

may not be adequately explained by a model with one single A. This would result in

an overestimation of A, thereby resulting in a poor fit, particularly when the number

of small areas m is large. Even if most of the small areas would require a random

effects term in the regression model, it is more likely that only a small proportion of

small areas would need a bigger value of A, and a smaller value of the same would be

sufficient for other areas. In this paper, we assume that v1, . . . ,vm are independently

distributed with mean 0 and a two-component mixture of normal distributions with

variance either A1 or A2(> A1). This model is potentially useful for handling large

outliers in small area means.

Bell and Huang (2006) presented an insightful discussion about using a t-distribution
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with a known d.f. to handle outliers in the Fay-Herriot model. The theoretical re-

gression residuals from (1.1) consist of the sum of the sampling error and the model

error, which are not individually observable. Bell and Huang (2006) argued that a

residual may be an outlier, either due to the sampling error or the model error. It

is difficult to distinguish between the scenarios of the sampling error outlier or the

model error outlier, since the data used in fitting the model (1.1) cannot readily dis-

entangle the two cases. They explained that the consequences of these two types of

outliers are quite different. If the model error vi is an outlier for some areas, then the

regression model (or synthetic estimation) is not good for these areas. In that case,

the direct estimator Yi should be used as the small area estimator. Datta and Lahiri

(1995) considered this case using a scale mixture of normal distribution. An alter-

native to this approach is proposed in the present article through a two-component

normal mixture. Bell and Huang (2006) noted that, in the presence of a model out-

lier, if the direct estimator also has large variability, then no satisfactory solution

exists. On the other hand, if the sampling error ei is an outlier due to an under-

estimation of the variance Di, then the direct estimator Yi is not reliable; Bell and

Huang (2006) argued that the “synthetic estimator” xT
i β may be used for prediction.

To address this issue, they proposed a t-distribution for the sampling distribution.

For further discussion, we refer to this article.

There is a substantive literature on the frequentist approach for the robust estimation

of small area means in the presence of outliers. Ghosh et al. (2008) considered the

robust empirical Bayes estimation of small area means for area level model. They

used the Huber’s ψ-function to limit the influence of outliers. For unit level models

Sinha and Rao (2009) and Chambers et al. (2014) proposed a robust modification of

EBLUPs of the finite population means of small areas. They also used the Huber’s

ψ-function to limit the impact of outlier observations on the estimators of model

parameters and the best linear unbiased predictors. While Sinha and Rao (2009)

provided robust projective EBLUPs (in the terminology of Chambers et al. (2014))

of the finite population small area means, the latter group of authors discussed the

limitation of such predictors in terms of bias, and also proposed robust predictive

EBLUPs to remedy this concern.

This paper is organized as follows. In Section 2 we describe the proposed model

and discuss some properties of our new shrinkage estimators. In Section 3 we illus-
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trate our method to estimate U.S. poverty rates for 3141 counties, based on 5-year

estimates from the American Community Survey. The performance of the model,

in comparison with the traditional Fay-Herriot model, is discussed in Section 4 and

Section 5. Section 6 provides a concluding discussion. A detailed proof of the

propriety of the posterior distribution is moved to the Appendix.

2. Two-component normal mixture model

Fay and Herriot (1979) proposed a model which has been extensively used in many

small area estimation applications to provide reliable estimates of poverty and in-

come measures. While for regular data the model successfully produces accurate

shrinkage estimators of small area means, it breaks down in the presence of sub-

stantial outliers among small area means. In order to account for the outliers, we

consider a two-component normal mixture extension of the Fay-Herriot model. This

model is given by

yi = θi + ei, θi = xT
i β +(1−δi)v1i +δiv2i, i = 1, . . . ,m, (2.1)

where ei, δi, v1i, v2i are independently distributed with P(δi = 1|p) = 1− p, v1i ∼
N(0,A1) and v2i ∼ N(0,A2). As in (1.1), β is an r× 1 vector of regression param-

eters, and the sampling errors e1, . . . ,em are independently normally distributed. To

complete our HB structure, we consider the following class of priors,

π(β ,A1,A2, p) = π
∗(A1,A2) ∝ A−α1

1 A−α2
2 I(0 < A1 < A2 < ∞). (2.2)

We use a uniform prior on the regression parameter β and the mixing proportion

p. For the prior on the variance parameters, we choose α1 < 1 < α2 suitably, and

we discuss the permissible choices of the values of α1 and α2 later. We impose the

restriction A1 <A2, so that we do not have a label switching problem leading to non-

identifiability. The area-specific random effects corresponding to the outlying areas

in the model are assumed to follow a normal distribution with larger variance, which

remains the motivation behind imposing such a restriction. While for the parameter

β common to all the components of the mixture model, an improper uniform prior

is reasonable, the prior for A1 and A2, which are not common in all the components

of the mixing distributions, is required to be at least partially proper. By partially
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proper we mean that while the marginals are improper, conditional priors for A2

given A1, and A1 given A2 are proper. For this to hold for our class of priors for

A1,A2, it is necessary and sufficient that α1 < 1 < α2. A partially proper prior is

required for the parameters that are not common to all components of a Bayesian

mixture model (cf. Scott and Berger, 2006).

Since the Bayesian model involves improper priors, in Theorem 2.1 below we pro-

vide sufficient conditions that ensure the resulting posterior distribution from the

proposed model will be proper. A detailed proof of Theorem 2.1 is given in Sec-

tion 6.

Theorem 2.1 The resulting posterior distribution from model (2.1) and the prior in

(2.2) will be proper if (a) m > r+2(2−α1−α2) and (b) 2−α1−α2 > 0.

The sufficient conditions in Theorem 2.1 provide a set of permissible values for α1

and α2. In conjunction with the condition 2−α1−α2 > 0, the condition α2 > 1

implies α1 < 1. We noted earlier that the last two conditions are necessary to elicit

partially proper priors. The special case α1 = 0 is feasible, which corresponds to a

uniform prior, provided 1 < α2 < 2. However, it is not possible to assign a uniform

prior on A2. If α1 =
1
2 , then 1 < α2 <

3
2 . Also, for mixture models, Jeffreys’ prior

has no closed-form expression to work with.

Our choice of a prior for the mixing parameter p is Uniform(0,1). We can modify

this prior if subjective information is available. If past experience in an application

suggests any information regarding the proportion of the outlying areas, it can be

incorporated in the model by modifying the prior for p. Sufficient conditions for

the propriety of the posterior density will remain unchanged. For instance, if the

model is modified with the assumption that p follows a known Beta distribution,

the sufficient conditions provided in Theorem 2.1 will remain intact.

It is well-known that even a single substantial outlier will collapse shrinkage esti-

mators of all θi’s based on the model (1.1) to the direct estimators yi’s (see Dey

and Berger, 1983; Stein, 1981). As a result, model-based estimators will fail to

borrow strength from other small areas. To protect against this odd behaviour,

Angers and Berger (1991), and Datta and Lahiri (1995) suggested a robust shrinkage
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model. These authors used a suitable scale mixture of normal distributions to model

a long-tail distribution of the θ ’s. These methods assume the knowledge of the

scale mixing distribution, which may not be available. The purpose of our mixture

model proposed in (2.1) is to provide an alternative solution that does not require

the knowledge of the mixing distribution and to facilitate borrowing information

among non-outlying observations in the presence of some substantive outliers.

Below we discuss a heuristic comparison of the shrinkage property of the Bayes es-

timators of θi under the Fay-Herriot model and our proposed model, in the presence

of substantial outliers. For the Fay-Herriot model, given the values of the parameters

β and A, an estimator of θi is

θ
FH
i = yi−

Di

Di +A
(yi− xT

i β ), i = 1, . . . ,m. (2.3)

In the presence of outliers, the frequentist estimators of A will be large, and the

posterior density of A will have a long right tail, which will also result in a large

Bayesian estimator of A. Consequently, an estimate of the shrinkage coefficient

Di/(Di+A) will be rather small, and the Bayes or the EB estimator of θi will borrow

little from its synthetic regression prediction and it will collapse to direct estimator

yi for all i.

We now argue that the proposed mixture model is more flexible to retain shrinkage

of the non-outlying observations in the presence of outliers. Let E(θi|β ,A1,A2, p,y)

= θ Mix
i . Using iterated expectation E(θi|β ,A1,A2, p,y) = E[E(θi|β ,A1,A2,δi, p,y)|

β , A1,A2, p,y], and after noting that E(θi|β ,A1,A2,δi, p,y)=
DixT

i β +A1+δiyi

Di +A1+δi

, p̃i =

P(δi = 0|β ,A1,A2, p,y), we get

θ
Mix
i = yi−

[(
Di

Di +A1

)
p̃i +

(
Di

Di +A2

)
(1− p̃i)

]
(yi− xT

i β ), (2.4)

where

p̃i =

p

(Di+A1)
1
2

exp
{
−1

2
(yi−xT

i β )2

(Di+A1)

}
p

(Di+A1)
1
2

exp
{
−1

2
(yi−xT

i β )2

(Di+A1)

}
+ (1−p)

(Di+A2)
1
2

exp
{
−1

2
(yi−xT

i β )2

(Di+A2)

} , (2.5)

for i = 1, . . . ,m. In the presence of substantially large outliers, (yi− xT
i β )2 and A2
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are expected to be high, hence P(δi = 0|β ,A1,A2, p,yi) ≈ 0. This will result in the

second shrinkage term within square brackets in (2.4) to be dominant. However,

since the posterior distribution of A2 has a long tail, the shrinkage coefficient asso-

ciated with the second component will be small and θ Mix
i ≈ yi, i.e., if the ith area is

outlying then the small area estimator based on this model will be very close to its

direct estimator. On the other hand, for any non-outlying areas p̃i will be away from

0, and their shrinkages will be less impacted by the outliers.

3. Data Analysis

We illustrate our proposed methodology by analysing a real data obtained from the

“American Fact Finder” website maintained by the US Census Bureau. The data

set contains 5-year ACS estimates of the overall poverty rates for 3141 US coun-

ties along with their associated design-based standard errors. The county identifiers

are not available for confidentiality reasons. In order to improve direct design-

based estimates, government agencies implement state-of-the-art small area estima-

tion methods to produce model-based estimates using auxiliary data. For poverty

estimation, the domain-level tax data are typically used as auxiliary information.

However, tax data are not available for public use, due to legal restrictions. In our

analysis we use the foodstamp participation rate as our only auxiliary variable (the

correlation between the foodstamp participation rate and the overall poverty rate is

0.81). Initially we fit the Fay-Herriot model (1.1) with the restricted maximum like-

lihood method (REML) as well as the hierarchical Bayesian (HB) method, assuming

flat priors for regression and variance parameter. The REML and Bayes estimates

of the model parameters are very close: β̂ REML = (0.056,0.634)T , ÂREML = 0.0009

and β̂ Bayes = (0.051,0.634)T , ÂBayes = 0.0009.

We have applied the proposed method to this data set and report the results in Ta-

ble 1. Our choices of α1 and α2 are 0.3 and 1.3 respectively. We have also performed

further analysis with other choices of α1 and α2 within the feasible range, but the

results were not considerably different. From Table 1, we see that the posterior

mean of A2(= 0.00619) is almost ten times larger than that of A1(= 0.00054). In ad-

dition, the estimate p̂ = 0.07 indicates that there are about 7% of small areas which

have much larger area specific variability compared to the majority. The outlying
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Figure 1: Analysis of the American Community Survey data

areas can be identified by computing the Bayes estimates of posterior probabilities

P(δi = 1|y). We plot the estimates of these probabilities for each area in Figure 1.

It shows that although most areas have low probabilities of having high random ef-

fects, some of them have higher chances of having a large variability in the model

error or the random small area effects. According to our analysis, approximately 7%

(221 out of 3141) of small areas have the posterior probability P(δi = 1|y) > 0.15,

and approximately 1.3% (40 out of 3141) of small areas have the posterior proba-

bility P(δi = 1|y)> 0.9.

4. Exploration of the shrinkage coefficients

We compare the shrinkage coefficients resulting from the proposed method with

those resulting from the standard Fay-Herriot model. By simulations we demon-

strate that the proposed method usually provides better shrinkage than the Fay-

Herriot method in the presence of outliers in the data. On the other hand, simu-

lated data from the standard Fay-Herriot model yield shrinkage coefficients based

on the proposed model that are very similar to those based on the Fay-Herriot model.
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Table 1: HB estimates of model parameters (for the ACS county level poverty rates
data)

Posterior Posterior Posterior Quantiles
Parameter Mean sd 2.5% Median 97.5%

β1 0.0465 0.0013 0.0440 0.0465 0.0491
β2 0.6605 0.0075 0.6459 0.6607 0.6748
A1 0.00054 0.00003 0.00049 0.00054 0.00059
A2 0.00619 0.00103 0.00454 0.00609 0.00854
p 0.0725 0.0237 0.0470 0.0704 0.1037

These two simulations, presented in Figure 2 essentially show the robustness of the

proposed method to outliers.

We mentioned in Section 2 that the proposed method is expected to provide better

overall shrinkage than Fay-Herriot method in the presence of outliers. In order to

demonstrate this property of the model, we conduct the following simulations. We

replace the direct estimates of the first 10% of small areas of the data by simulated

values and retain the rest of the data set intact. The purpose is to artificially con-

taminate the data set. We generate the direct estimates of the first 10% of small

areas from the model (1.1). We use the sampling variances of these areas to gener-

ate the corresponding sampling errors. We use the estimated regression parameters

β = (0.06,0.6)T and model variance 0.0009 obtained from the Fay-Herriot analysis

of the original data, using the Prasad-Rao method. We use these model parameter

values and the values of the auxiliary variables from these 10% of small areas to

retain the mean structure and variability of the small area means which are nearly

similar to the original population. We introduce outliers through the use of a heavy

tail distribution or large model variance for random effects. Random small area ef-

fects are generated from (a) vi ∼ t1, (b) vi ∼ t2, (c) vi ∼ t3, with proper scaling for

each and (d) vi ∼ N(0,52×a2). Note that t1 distribution is the Cauchy distribution

which does not have a variance (indeed it does not have a mean either). We rescale

the draws from t1, t2 and t3, multiplying them by the adjusting factor,
N0.75

T d f
0.75

a, where

N0.75 and T d f
0.75 are the 75th percentile of N(0,12) and t (for a specified df) respec-

tively. By multiplying the draws by this adjusting factor, we intend to match the
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inter-quartile range of draws from the t-distribution to the inter-quartile range of a

N(0,a2) distribution. Since the Prasad-Rao estimate of the random effects variance

based on the original data is 0.0009, we choose a2 = 0.0009 in order to maintain

consistency.
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Figure 2: Boxplots of the estimated shrinkage coefficients for two methods. In
plots (a)−(d), data are partially simulated for some small areas by drawing random
effects from (a) t1, (b) t2, (c) t3, (each of (a)−(c) scale adjusted) and (d) N(0,52×
(0.03)2). In plot (e), we fully simulate data for all areas by drawing random effects
from N(0,(0.03)2).

We apply the proposed method, as well as the Fay-Herriot method, and compare the

estimates of shrinkage coefficients in Figures 2 and 3. We see from Figure 3 that

when we partially contaminate the data set using (a) re-scaled t1 (Cauchy) and (d)

N(0,52× (0.03)2), the overall shrinkage obtained from the proposed model is con-

siderably higher than the overall shrinkage obtained from the regular Fay-Herriot

method. This result shows the flexibility of the proposed model in borrowing in-

formation from other areas when outliers in the random effects are present. Panels

(b), (c) and (e) of Figure 2 show that the proposed method performs similarly to the

Fay-Herriot method when the departure of the random effects distribution from the

normal is moderate or none.
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Figure 3: Histograms of the estimated shrinkage coefficients of the two methods
when the data are partially simulated by drawing random effects from (a) t1, (b) t2,
(c) t3 (each of (a)−(c) scale adjusted), and (d) N(0,52× (0.03)2)
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5. Performance of the proposed method

In order to evaluate the performance of the proposed model, described in Section 2,

we conduct a simulation study. This analysis is based on the simulated data sets

generated under different settings. For each m = 100, 500 and 1000, we generated

100 data sets. Here we set r = 2, x = (1,x1)
T and generate m copies of x1 from

N(10,(
√

2)2). For each choice of m, the set of covariates is generated exactly once

and used for all 100 data sets. Our choice of β is β = (20,1)T . The sampling error

ei’s are generated from N(0,Di), i = 1, . . . ,m, where Di’s are from the set {0.5, 1,

1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}, and each value in the set is allocated to the same

number of small areas. Random effects in model (1.1) are generated under three

different settings:

vi ∼ N(0,12), (5.1)

vi ∼ (1−δi)N(0,12)+δiN(0,52), and (5.2)

vi ∼ t3, (5.3)

where i = 1, . . . ,m. For the normal-mixture setup (5.2), we set δi = 1 for each i

multiple of 5 and keep the rest of the δi = 0, the simulated data sets contain 20%

of observations from the normal distribution with a variance of 25. Based on the

generated set of vi’s , we compute both the θi’s and yi’s by (1.1). For each of 100

simulated data sets for each setting, we predict θi’s based on the Fay-Herriot model

and the proposed area-level normal-mixture model. We measure the performance of

each prediction method by computing the (empirical) mean squared error (MSE)=
1
m

m
∑

i=1
(θi− θ̂i)

2, the mean absolute error (MAE)= 1
m

m
∑

i=1
|θi− θ̂i|, the mean relative

squared error (MRSE)= 1
m

m
∑

i=1

(θi−θ̂i)
2

θ 2
i

and the mean relative absolute error (MRAE)=

1
m

m
∑

i=1

|θi−θ̂i|
θi

, where θi’s are true and θ̂i’s are estimated small area means (for our

simulation setup, all the θi’s are positive). These empirical deviation measures are

typically used in the small area estimation literature to compare the accuracy of

various estimation methods (Rao, 2003). For each simulated dataset, we compute

MSE, MAE, MRAE and MRSE for two different methods and report the average

values based on all simulated data sets. The results of the simulation study are

presented in Tables 2 and 3. In Table 2 we report the MSE and MAE and in Figure 4
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we plot the MRAE and MRSE based on the overall simulation study. Table 3 shows

a more detailed result when the vi’s are drawn according to equation (5.2). From

Table 3 we can compare the performance of the two prediction methods for outlying

areas (random effects drawn from N(0,52)) and non-outlying areas (random effects

drawn from N(0,12)), separately. The simulation results indicate that the proposed

method tends to perform better than the Fay-Herriot method when the possibility of

the presence of outliers is high, and performs similarly otherwise.

Table 2: Comparison of the methods based on the simulated MSE and MAE of
prediction. The results are based on 100 simulated data sets

m=100 m=500 m=1000
Scenario Proposed FH Proposed FH Proposed FH

(5.1) Normal
MSE 0.72 0.71 0.69 0.69 0.68 0.68
MAE 0.67 0.67 0.66 0.66 0.66 0.65

(5.2) Mixture
MSE 1.48 1.75 1.49 1.81 1.30 1.87
MAE 0.86 1.01 0.85 0.98 0.84 1.04

(5.3) t3
MSE 1.14 1.27 1.01 1.20 1.14 1.30
MAE 0.83 0.84 0.79 0.81 0.80 0.84
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Figure 4: (a) The mean relative squared error (MRSE) and (b) the mean relative
absolute error (MRAE) based on 100 simulated data sets; A dotted line for the Fay-
Herriot method and a solid line for the proposed method.
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Table 3: Comparison of the methods based on the simulated MSE, MAE, MRSE
and MRAE of prediction. The results are based on 100 simulated data sets. The
performance of the methods is compared separately for outlying and non-outlying
areas based on the simulation design.

Scenario (5.2) Mixture
m=100 m=500 m=1000

Proposed FH Proposed FH Proposed FH

MSE
A1 = 12 0.90 1.26 0.80 1.06 0.80 1.32
A2 = 52 3.39 3.69 4.25 4.80 3.28 4.03

MAE
A1 = 12 0.73 0.88 0.69 0.82 0.70 0.91
A2 = 52 1.43 1.47 1.49 1.61 1.39 1.59

100×MRSE
A1 = 12 0.10 0.14 0.09 0.12 0.09 0.15
A2 = 52 0.43 0.50 0.53 0.56 0.44 0.61

10×MRAE
A1 = 12 0.25 0.30 0.23 0.27 0.24 0.30
A2 = 52 0.50 0.52 0.51 0.54 0.49 0.57

6. Discussion

In this paper, we propose a robust alternative to the Fay-Herriot model. The pro-

posed hierarchical Bayesian estimation procedure is straightforward. Another ro-

bust alternative is a t-distribution for the random effects, which requires information

regarding the degrees of freedom. Xie et al. (2007) proposed a method to estimate

the degrees of freedom. However, Bell and Huang pointed out that only a very lim-

ited information could be extracted from the data regarding the degrees of freedom

parameter. We propose a method based on non-informative priors for the param-

eters. We provide sufficient conditions for the propriety of the resulting posterior

distributions.

Model-based small area estimates depend on the accuracy of the underlying model

assumptions. Larger values of the area specific random effects may be caused by

a poor choice of the linking model or the lack of predictive quality of the auxil-

iary variables. If the model-based estimates of the area specific random effects are

significantly larger for some areas compared to the other areas, it is probably mean-

ingful to retain the direct estimates instead of the model-based estimates for those

areas to avoid possible inaccuracy. Nevertheless, we should be cautious in this rec-

ommendation if there is any indication that the sampling variance is underestimated.
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Datta and Lahiri (1995) recommended heavy-tailed priors for random effects by

emphasizing the fact that estimators obtained by using these priors were similar

to direct estimators for the areas with extreme observations. However, the estima-

tors for non-outlying areas should shrink direct estimators more towards synthetic

estimators. Also, the magnitude of this shrinkage may depend on the quality of

the auxiliary information. While for an outlying observation our model limits the

shrinkage of the Bayes predictor to the synthetic estimator, for non-outlying ob-

servations it enables the Bayes predictors to retain the shrinkage to the synthetic

estimator when the regression model provides a good fit.
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Appendix

Gibbs sampling for the proposed model

In order to apply our model, we use Gibbs sampling. We derive the set of full

conditional distributions from the posterior joint density of θ = (θ1, . . . ,θm)
T , β =

(β1, . . . ,βr)
T , δ = (δ1, . . . ,δm)

T , A1, A2 and p, which is given by

π(θ ,β ,A1,A2,δ , p|y) ∝

{
m

∏
i=1

exp
{
−(yi−θi)

2

2Di

}} m

∏
i=1

[
pδi(1− p)1−δi

{
1√
A1
× exp

{
−(θi− xT

i β )2

2A1

}}δi

×
{

1√
A2
× exp

{
−(θi− xT

i β )2

2A2

}}1−δi ]
×A−α1

1 A−α2
2 × I(0 < A1 < A2). (6.1)

From (6.1), we get the following full conditional distributions:

(I) θi|β ,A1,A2,δ , p,y ind∼ N
(DixT

i β +A2−δiyi

Di +A2−δi

,
DiA2−δi

Di +A2−δi

)
, i = 1, . . . ,m;

(II) β |θ ,A1,A2,δ , p,y∼ N
(

G−1
[

m
∑

i=1
A−1

2−δi
xiθi

]
,G−1

)
, where G is given by

m
∑

i=1
A−1

2−δi
xixT

i ;

(III) p|θ ,β ,A1,A2,δ ,y∼ Beta
(

m
∑

i=1
δi +1,m−

m
∑

i=1
δi +1

)
;

(IV) A1|A2,θ ,β ,δ , p,y has the pdf f1(A1), where,

f1(A1) ∝ A−(α1+∑
m
i=1

δi
2 )

1 exp
{
−

m
∑

i=1

δi(θi− xT
i β )2

2A1

}
I(A1 < A2),

(V) A2|A1,θ ,β ,δ , p,y has the pdf f2(A2), where,

f2(A2) ∝ A−(α2+∑
m
i=1

(1−δi)
2 )

2 exp
{
−

m
∑

i=1

(1−δi)(θi− xT
i β )2

2A2

}
I(A1 < A2),

(VI) For i = 1, . . . ,m, δi|θ ,β ,A1,A2, p,y are independent with

P(δi = 1|θ ,β , p,y) =

p√
A1

exp
{
− (θi−xT

i β )2

2A1

}
p√
A1

exp
{
− (θi−xT

i β )2

2A1

}
+ (1−p)√

A2
exp
{
− (θi−xT

i β )2

2A2

} .
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Our goal is to estimate θi, i.e., small area mean for the ith area, i = 1, . . . ,m. We

implement Gibbs sampling using the conditional distributions (I)−(VI) in order to

find posterior means and standard deviations of θi’s. Conditional distribution (IV)

and (V) may not have always admit a closed form expression.

Proof of Theorem 2.1

Note that under the mixture model, the likelihood function of the model parameters

β , A1, A2 and p based on the marginal distribution of y1, . . . ,ym is given by

L(β ,A1,A2, p) =C×
m

∏
i=1

[
p

(A1 +Di)
1
2

e
−
(yi− xT

i β )2

2(A1 +Di) +
(1− p)

(A2 +Di)
1
2

e
−
(yi− xT

i β )2

2(A2 +Di)
]
,

(6.2)

where C is a generic positive constant not depending on the model parameters.

Suppose for 0 < a < b < ∞ we have a ≤ Di ≤ b, i = 1, . . . ,m. Since (A1 + b) ≥
(A1 +Di)≥ (a/b)(A1 +b), (A2 +b)≥ (A2 +Di)≥ (a/b)(A2 +b), from (6.2)

L(β ,A1,A2, p)≤C×
m

∏
i=1

[
p

(A1 +b)
1
2

e
−
(yi− xT

i β )2

2(A1 +b) +
(1− p)

(A2 +b)
1
2

e
−
(yi− xT

i β )2

2(A2 +b)
]
.

(6.3)

For k = 0,1, · · · ,m, let Pk = {S
(k)
1 ,S(k)2 } be an arbitrary partition of {1,2, · · · ,m},

where S(k)1 has k elements and S(k)2 has m− k = l(say) elements. Let Pk denote all(m
k

)
collections of {S(k)1 ,S(k)2 }. Then, expanding the product of the right hand side

of (6.3), we get

L(β ,A1,A2, p)≤C
m

∑
k=0

∑
Pk∈Pk

pk(1− p)m−ke
−∑

i∈S(k)1

(yi− xT
i β )2

2(A1 +b)
−∑

i∈S(k)2

(yi− xT
i β )2

2(A2 +b)

(A1 +b)
k
2 (A2 +b)

m−k
2

.

(6.4)

To show propriety of the posterior density, we show integrability of each of the 2m

summands on the right hand side of (6.4) with respect to the prior given in (2.2).

We first consider the case k = 0. Here P0 has one element and S(0) is a null set. Let
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Q(y) = yT [I−X(XT X)−1XT ]y. In this case, the integral I(0) of the term is

I(0) = C
∫

∞

0

∫
Rr

∫ A2

0

∫ 1

0
(1− p)md p

dA1

Aα1
1

A−α2
2

(A2 +b)−
m
2

e
−∑

m
i=1

(yi− xT
i β )2

2(A2 +b) dβdA2

= C
∫

∞

0
A1−α1−α2

2 (A2 +b)−
m
2 e−

1
2

Q(y)
A2+b dA2 (since α1 < 1)

≤ C
∫

∞

0
A1−α1−α2

2 (A2 +b)−
m−r

2 dA2 < ∞, (6.5)

if and only if 2−α1−α2 > 0 and 1−α1−α2− m−r
2 <−1, which are equivalent

to the conditions outlined in Theorem 2.1.

For the case k = m, again there is one term in Pm and the resulting integral, pro-

ceeding as in I(0), is bounded above by

C
∫

∞

0
A−α1

1 (A1 +b)−
m−r

2

∫
∞

A1

A−α2
2 dA2dA1

= C
∫

∞

0
A1−α1−α2

1 (A1 +b)−
m−r

2 dA1 (since α2 > 1)< ∞, (6.6)

under the conditions of the theorem.

Now consider a case where 1≤ k≤m−1. Let S(k)1 be a set of indices {i1, . . . , ik} and

let S(k)2 = { j1, . . . , jl} = {1,2, · · · ,m} \ S(k)1 . Let us define, M1 = (xi1 , . . . ,xik)
T and

M2 = (x j1 , . . . ,x jl )
T . Suppose g = rank(M1). If g > 0, suppose B≡ {α1, . . . ,αg} ⊂

{i1, . . . , ik}, so that
{

xα1 , . . . ,xαg

}
is linearly independent. If g = 0, the set B is

empty. Suppose {γ1, . . . ,γr−g}⊂ { j1, . . . , jl} such that
{

xα1 , . . . ,xαg ,xγ1 , . . . ,xγr−g

}
is

linearly independent. Let us define the r×r matrix F =
(
xα1 , . . . ,xαg ,xγ1 , . . . ,xγr−g

)T ,

which is non-singular. Consider the non-singular linear transformation of β by

φ = Fβ . With these developments, the integral of the term identified by {S(k)1 ,S(k)2 }
in the right hand side of (6.4) with respect to the prior π(β ,A1,A2, p) is bounded

above by a positive generic constant C times

∫
∞

0

∫
∞

A1

∫
Rr

A−α1
1 A−α2

2 e
−∑

i∈S(k)1

(yi− xT
i β )2

2(A1 +b)
−∑

i∈S(k)2

(yi− xT
i β )2

2(A2 +b)

(A1 +b)
k
2 (A2 +b)

l
2

dβdA2dA1
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≤
∫

∞

0

∫
∞

A1

∫
Rr

A−α1
1 A−α2

2 e
−∑

g
u=1

(yαu− xT
αu

β )2

2(A1 +b)
−∑

r−g
t=1

(yγt − xT
γt

β )2

2(A2 +b)

(A1 +b)
k
2 (A2 +b)

l
2

dβdA2dA1

=
∫

∞

0

∫
∞

A1

∫
Rr

A−α1
1 A−α2

2 e
−∑

g
u=1

(yαu−φu)
2

2(A1 +b)
−∑

r−g
t=1

(yγt −φg+t)
2

2(A2 +b)

(A1 +b)
k
2 (A2 +b)

l
2

dφdA2dA1

=
∫

∞

0

∫
∞

A1

A−α1
1 A−α2

2

(A1 +b)
k−g

2 (A2 +b)
l−r+g

2

dA1dA2

≤
∫

∞

0

∫
∞

A1

A−α1
1 A−α2

2

(A1 +b)
k−g

2 (A1 +b)
l−r+g

2

dA2dA1

=
∫

∞

0

A1−α1−α2
1

(A1 +b)
k−g

2 (A1 +b)
l−r+g

2

dA1

=
∫

∞

0

A1−α1−α2
1

(A1 +b)
m−r

2
dA1 < ∞, (6.7)

by the conditions of the theorem. Since the integrability conditions do not depend k

or on the indices {i1, . . . , ik} and { j1, . . . , jl} and on the values k and l, the conditions

2−α1−α2 > 0 and m > r+2(2−α1−α2) will be sufficient to ensure the propriety

of the posterior. �


